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Abstract 

We observe an increasing demand for rapid and objective assessment of yield 
quality parameters in horticultural crops, which are featured by well-defined breeding 
targets and a multitude of parameters relevant for breeding processes. In this context, 
this paper addresses hardware and algorithmic requirements for a robust image-based 
assessment of bush bean traits according to the breeders’ evaluation practice and 
demonstrates this with a new method for the estimation of pod length and caliber. To 
achieve this we built a customized acquisition box with a calibrated camera for 
maximally controlled imaging conditions. We trained a random-forest classifier with six 
different features extracted from 140 bean pod images for automatic identification of 
apical and basal pod ends including a check for the presence of peduncles, which 
together with the distal tips need to be excluded from the pod length measures with 
respect to marketing requirements. We validated estimations of metric pod length and 
caliber with manual measurements from an expert breeder and achieved in both cases a 
high concordance with correlations of 96%.  The method developed in this study will 
offer new opportunities for automated sensor-based assessment of quality traits in bush 
beans with the potential to considerably reduce the breeding effort, in particular the 
manual labor-intensive scorings. The approach comes along with higher objectivity and 
an increased scoring resolution. 
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INTRODUCTION 

Breeding vegetables is a complex task, which is influenced by expectations of growers, 
consumers and distributors. Growers consider yield stability and quality, treatment tolerance, 
pathogen resistance and early vigor as important criteria (Witcombe, 2005). Buying behavior of 
consumers shows that they primarily pay attention to product freshness (Babicz-Zielinska and 
Zagorska, 1998; Jiménez-Guerrero et al., 2012; Steenkamp, 1997), a complex trait that is judged 
from the visual cues (mainly color-related like intensity and homogeneity) in the first place, 
followed by seasonality and regionality aspects (e.g. transport chains). Quality judgment from 
haptic and olfactory sensations plays a subordinate role. In addition, distributors consider 
logistic factors like packaging and stowing, and thus favor uniform products of defined size and 
shape. An aspect, which has been marginally studied, is the evaluation of these traits, called 
scorings (Simko and Hayes, 2018). Precise trait assessment requires many years of expert 
knowledge and efficient execution with one or two persons dedicated to one experiment or 
crop. This includes having scorings at the same day time and the additional use of well-known 
genotypes for self-calibration purposes. Despite these objectification measures several issues 
remain that may have an unfavorable impact on scorings: time pressure due to narrow time 
frames and increasingly larger experimental designs, variable individual form of each expert on 
the day, and increasingly little phenotypic discriminability of different cultivars. To meet the 
demand for faster and more objective screening methods affordable sensor-based solutions 
have the potential to tackle these problems and, in addition, to utilize new scoring categories 



and to increase scoring resolution. In this respect horticultural and especially vegetable 
breeding is payed little attention, i.e. new methods primarily focus on a few fruit vegetables like 
tomato and pepper, particularly in fruit detection (Raza et al., 2015; Schillaci et al., 2012; Song 
et al., 2014; Sun et al., 2018; Zhao et al., 2020) or disease detection and quantification (Liu and 
Wang, 2020; Raza et al., 2015; Wang et al., 2019; Wu et al., 2020). Most methods are not 
targeting an essential part of the breeding process, the large number of yield quality 
parameters, which are usually scored by hand. A first step in this direction was done by Polder 
et al. (1996), who developed a user-friendly software tool. CultivarJ is an ImageJ plugin that 
allows for the quantification of several shape parameters of legumes (pods), carrots (taproot) 
and onions (bulb, see also Heijden et al. (1996)). Torres et al. (2012) developed a camera-based 
approach with backlight, where bean pods appear as black silhouettes. However, these studies 
assume that cut bean samples always come with intact pod ends, displaying peduncles in 
particular, which is usually not the case.  Besides, no validation was presented for neither of 
these developments.  

In this manuscript we want to introduce a new approach to quantify pod parameters of 
legumes, which puts emphasis on the correct classification of different pod ends, a crucial step 
to calculate correct shape traits. In industrial processing the pods’ distal tips and peduncle 
leftovers are removed. In addition, our approach includes an extensive validation of our results 
that was done in collaboration with a professional bean breeding company, which conducted 
hand measurements parallel to our computer vision measurements.  Pod properties to be 
investigated with this setup are two standard traits during the breeding process of new bean 
varieties, namely pod length and caliber.  
 
MATERIALS AND METHODS 
 
Plant material and hand measurements 

Several bush bean varieties were grown on an open-field site according to standard 
practice by Van Waveren Saaten GmbH at Rosdorf, 37124 Germany. 14 varieties that were 
phenotypically different in pod appearance were chosen for analysis. When the beans reached 
the state of green maturity, pods were harvested by hand. It was paid attention that there was a 
good mixture of pods with base and peduncles to get equally distributed classes for later 
training with the supervised approach. Varieties (ID: 1, 4, 8, 27, 32, 36, 69, 73, 78, 81, 82, 88, 
119 and 156) were selected to cover a wide range of both color and shape features. 10 pods 
were analyzed per variety.  

Hand measurements were conducted by an expert breeder of Van Waveren Saaten GmbH. 
First, it was determined if the bean had a peduncle or not. Furthermore, the length of the bean 
was measured with a ruler by unbending the bean as far as possible. Peduncles and tips were 
not considered.  
 
Imaging setup 

Bean pods were placed in a customized photo box with reflective walls as shown in Figure 
1. This light-tight box design was chosen to ensure homogeneous illumination for a sufficiently 
large amount of bean pods. The top of the box contains a LED panel (Effilux) with integrated 
camera opening in the center. The base plate covers an area of 50 x 38 cm and consists of a blue 
robust material with low reflecting properties. The blue background facilitates pod detection in 
image processing. Images were acquired with a RGB camera Manta G-507 (Allied Vision, 5MP) 
and a 12 mm Ricoh FL-CC1218-5MX lens. The camera was calibrated according to Bouguet 
(2005) to check the impact of radial distortions and to calculate a factor to convert  the pixel to 
mm. The distance between camera lens and target area was approximately 80cm. At this 
distance no considerable distortions were observed and all further computations were 
conducted with the original image data.  



 

 

Figure 1. Photo Box in active state (door is closed during image acquisition) 

 
 
Image processing and data analysis 

We developed a new processing pipeline for a correct estimation of pod length and 
caliber and took special care that the way pods are harvested does not bias the results. Image 
processing was conducted with Python (using the OpenCV, PlantCV and sklearn libraries). Data 
analysis and visualization was done in RStudio. Pods were analyzed separately as follows. A 
Random Forest (RF) model was trained to classify both ends of each pod according to three 
categories, the pod’s apical thin end (further called tip) and two kinds of basal ends, either a 
peduncle or not (further called base). RF models belong to the class of bootstrap aggregating 
methods, i.e. they combine several independent classification models, in this case multiple 
decision trees, where single outputs are finally combined to one decision (classification) 
according to the majority principle.  Our RF classification is based on features that are derived 
from the change of pod width values x in a predefined range starting from each end of the pod’s 
center line. In addition to the width data two transformations of the same are used for feature 
calculation, which are a moving average function m(x) and a fitting function w(x). The initial 
step is the computation of the pod’s center line, which corresponds to a skeletonized binary pod 
mask. This is done by segmenting images in HSV (hue-saturation-value) color space with 
subsequent skeletonization and skeleton pruning. The hue channel of HSV was used to segment 
pods (composed of brown, orange, yellow, and green pixels) from the blue background such 
that pod pixels are represented by TRUE values and background pixels by FALSE values in the 
binary output. The binary mask was then skeletonized. Skeleton refinement was conducted 
with iterative pruning, which preserves the main branch of the skeleton. Hereby, branches up to 
a length of 50 pixels are subsequently removed, starting with shortest branches first. This 
threshold depends on image resolution and pod size and was chosen high enough (5-10% of the 
computed pod length) to remove larger side branches. Width values for corresponding center 
line pixels are then estimated by computing orthogonal lines for each center line section in a 
range of 10 pixels. Orthogonal lines were then compared with the binary pod representation. 
The length of each overlaying line segment represents the width of the pod at that specific 
position. The moving average function m(x) was computed with a sliding frame of 50 pixels size. 
The fitting function w(x) was fitted to the width values according to the following formula: 



𝑤𝑤(𝑥𝑥) = 𝑐𝑐 +
(𝑑𝑑 − 𝑐𝑐)

1 + 𝑒𝑒�𝑠𝑠∗(ln(𝑥𝑥)−ln(𝑝𝑝))�  
 

 

 
Figure 2. Pod width x at each pixel of the center line: Blue dots show the pod widths for one half 

of the bean. Orange dots show the bean widths for the second half. Black and gray 
lines indicate the 4-parametric log-logistic model fits w(x). Red and magenta lines 
indicate the moving average functions m(x).  

 
In this log-logistic model parameter x denotes the pixel position on the pod’s center line, other 
parameters are maximum width c, minimum width d, slope s and mirror point p. Figure 2 
displays widths x and corresponding function values of w(x) and m(x) for one selected pod. Six 
parameters were derived from the first 70 values of x, m(x) and w(x), respectively, and used as 
feature data in RF training: the minimum width in x, the minimum width d and the slope s 
estimated for w(x) and the coefficient R of a linear correlation between x and w(x). Furthermore, 
two binary states, one for local decreases [i], one for outliers [ii], were calculated: [i] function 
m(x) was checked for local decreases by comparing each value in m(x) with the value three 
pixels apart. If the width of at least one position was greater than the width of the following, a 
local decrease was detected, resulting in a TRUE binary state for this feature. [ii] For outlier 
detection, the data was first normalized: 

 𝑥𝑥′ = 𝑥𝑥 𝑤𝑤(𝑥𝑥)⁄      (1)  
 
After this, outliers were detected as follows: 
 

𝑥𝑥′ = �𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜, 𝑥𝑥′ > 𝑄𝑄3 + 1.5 ∗ 𝐼𝐼𝑄𝑄𝐼𝐼
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜, 𝑥𝑥′ < 𝑄𝑄1 − 1.5 ∗ 𝐼𝐼𝑄𝑄𝐼𝐼     (2) 

Q1 and Q3 denote lower and upper quartile, IQR denotes the inter quartile range. Again, the 
detection of at least one outlier resulted in a TRUE binary state. The following considerations 
led to the selection of the listed features. Local decreases, as displayed in Figure 2 on the red 
line, are typical for pod ends with a peduncle. Peduncles are also indicated by a weaker 
correlation between hand measured and modeled data and a smaller slope in comparison to tip 
ends. Also outliers are an indication of peduncles. In contrast, tips show a strong correlation 



factor, a higher slope, no outliers, and no local decreases. In addition, low width minima (both 
modeled and measured) are characteristic for tips. Bases are normally characterized by higher 
minima in comparison to tips, but they also show strong correlations and no outliers and no 
local decreases. They also have a smaller slope, in comparison to tips.    

For RF training an image data set with 120 beans was labeled and split up into 80% 
training data and 20% test data.  The RF decision trees were trained with the feature data and 
parametrized as follows (see sklearn function for details): number of decision trees: 100 
and quality criterion: ‘entropy’, which controls the split at each node in the tree, affecting the 
overall tree structure. All other parameters were left unchanged to the default settings.  The 
trained model was finally applied to the test data set. After classification tips and peduncles 
were cut off and excluded for the further analysis (Figure 3: red-colored) as follows: Pods’ ends 
and consequently center line and corresponding width values were cropped at a position, 
where the moving average m(x) exceeded a particular width that gave the best results with 
respect to the reference measurement. Pod length was then calculated from the remaining 
center line with an arcLength-function (OpenCV). The caliber corresponds to the maximum 
width from the remaining width values x.  

 

 

Figure 3. Processed image with beans of variety 32; red:  detected tips and peduncles, excluded 
from further analysis; yellow: pod center line; blue: position of the caliber estimation. 

 
 
RESULTS AND DISCUSSION 

This experiment was conducted with 140 beans. Due to the time-consuming scorings and 
hand measurements a larger sample size was not possible. In 3 out of 140 beans two tips were 
detected (varieties 82 and 88), which is the reason, why they were excluded from further 
analysis. One bean from variety 81 was not considered due to a clearly wrong hand 
measurement. For the remaining beans the classifier reached an accuracy of 97% for the apical 
end (tip), 84% for the base and 85% for the peduncle, which gives a total accuracy of 85% for 
the classification of the basal end. Figure 3 shows one classification result: All tips at the apical 
end were classified correctly; the basal ends of bean 6 and 7 were misclassified. Detected 
peduncles and tips were cut off correctly (red regions). Misclassified peduncles (like bean 7) 
typically had no petioles in our experiment and were therefore contributing only small errors to 
the length estimation. Length and caliber values were computed and converted from pixel to 
metric values using a conversion factor of 0.2 mm / pixel. As illustrated in Figure 4, computer 
vision measurements of pod lengths correlate strongly with hand measurements, underlined by 
high accuracy and precision statistics with a correlation factor of ρ = 0.96 and a linear fit (blue 
line), which is almost identical to the identity line. In addition, the coefficients of variation are in 



the same range for the computer vision and hand measurement data (Table 1). The findings are 
strengthened by an average percentage deviation between hand measurements and computer 
vision data of 0.49% (Table 1). Also the caliber measurements via computer vision delivered 
precise results and correlated strongly with the hand measurements (ρ = 0.96).  However, we 
observed a systematic shift between identity line and prediction of ~1.5mm for the entire 
caliber range, which is caused by the background segmentation step, where some pixels that 
consist of both bean and blue background information (mixed pixels) have been attributed to 
the wrong class. The parametrization of the segmentation step could be improved to achieve a 
higher accuracy in the prediction of pod calibers. However, the precision of the estimations is 
high and the relation between computer vision estimations and the hand measurements can be 
used to make reliable predictions.  

 

 

Figure 4. Comparison of length estimations via computer vision (CV) and hand-measured data. 
Correlation factor ρ = 0.96. Linear fit (blue line) is close to the identity line, indicating 
the high estimation quality. 

 
CONCLUSION 
We developed a customized hardware setup together with a new image processing software 
that allows for the simultaneous acquisition of bean pods. The LED panel and the reflective 
walls promote a pretty homogeneous illumination across the image area, which is important for 
image segmentation. In such a setup flat objects like the bean pods do not cast any shadows that 
are visible to the camera and which may cause problems during image processing. Simple 
operationality that accounts for the breeder’s daily routine was one important aspect. Therefore 
we ensured that no particular pod preparation is required and the setup is easy to use. In our 
experimental study we used bean pods displaying a wide range of shapes and colors, i.e. 
different calibers, lengths, curvatures, and colors, and did not encounter any problem 
particularly related to a specific cultivar. Admittedly, our method is restricted to beans, but we 
assume that it is capable to work with a very wide range of bean phenotypes.  Despite color 
traits were not examined in this study the imaging box also provides an optimal environment 
for color assessment. We consciously built the box without backlight that may facilitate shape 
detection (see e.g. Torres et al. (2012)), but complicates color recognition. In this study, an 



amount of 10 bean pods per variety was analyzed simultaneously, but the size of the photo box 
allows the analysis of many times the amount as long as the pods are not in direct contact to 
each other. In any case the pod orientation is completely irrelevant. In our study the Random 
Forest Classifier reached a high precision of 97% for the detection of the apical end, but only 
85% for the classification of the basal end. To improve this further, the classifier needs to be 
trained with a larger data set, which was not available for this study due to the limiting hand 
measurements. The image features used for classification may be improved further or 
completed by additional features like changes in color or brightness. We also observed a few 
particular cases, where the classifier failed, e.g. some tips came without pinnacle and some 
peduncles without petals giving them a smooth shape. This could also be compensated by a 
larger training set. Finally, both pod end classification and localization are typical application 
scenarios for deep learning approaches, which we will test on our data in the future. 
 
 
Table 1. Summary table of hand-measured and computer vision data.  

ID Replicates 
Peduncle 
number 

[E]a 

Peduncle 
number 

[M]b 

Mean 
pod 

length 
[E] 

(mm) 

CVc of 
pod 

length 
[E] 

Mean 
pod 

length 
[M] 

(mm) 

CV of 
pod 

length 
[M] 

Length 
deviation 

[%] 

Mean 
caliber 

[E] 
(mm) 

Mean 
caliber 

[M] 
(mm) 

1 10 2 3 125.28 0.08 125.60 0.08 -0.26 7.30 6.00 
4 10 2 4 115.19 0.09 114.30 0.10 0.77 6.92 5.40 
8 10 3 4 120.77 0.07 121.00 0.07 -0.19 7.26 5.80 
27 10 5 5 100.30 0.17 104.40 0.11 -4.09 6.90 5.30 
32 10 5 5 123.59 0.11 125.70 0.11 -1.71 7.62 6.10 
36 10 3 2 122.21 0.04 124.10 0.05 -1.55 7.36 5.80 
69 10 7 6 126.52 0.07 128.90 0.06 -1.88 8.36 7.05 
73 10 9 10 124.45 0.07 125.10 0.07 -0.52 7.64 6.35 
78 10 6 7 135.17 0.09 135.10 0.09 0.05 8.32 6.95 
81 9 8 6 141.71 0.06 139.56 0.07 1.52 9.36 7.89 
82 9 5 6 92.10 0.16 94.00 0.11 -2.06 8.49 7.00 
88 8 4 4 125.42 0.12 125.75 0.10 -0.26 9.85 8.19 
119 10 8 8 121.93 0.09 121.50 0.08 0.35 9.80 8.40 
156 10 7 8 115.03 0.09 111.60 0.09 2.98 9.08 7.05 
aM: manual measurements bE: estimated results from computer vision cCV: Coefficient of 
variation 
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